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Abstract—In generalization of earlier results for non-shear deformable plates, this note obtains a
systemn of linear ordinary differential equations for a problem of finite twisting and bending based
on an intrinsic version of the equations for finite deflections of shear deformable plates. The
differential equations of the system have constant coefficients for uniform plates, with this offering
the possibility of an explicit determination of the effect of shear deformability on the stability
characteristics of this non-linear structural problem.

INTRODUCTION

The recent reconsideration of the problem of combined twisting and bending based on an
intrinsic form of the equations for small finite deflections of non-shear deformable plates
(Reissner, 1992), suggests the possibility of an analogous analysis in which the effect of
transverse shear deformability is taken into account. In what follows we undertake such an
analysis through the use of a special case of the equations for finite deflections of shear
deformable plates in Reissner (1986).

We begin by transforming the equations taken from Reissner (1986) into their intrinsic
form. We then show that, in analogy to the earlier reduction of the two-dimensional eighth-
order problem in Reissner (1992) to a fourth order ordinary differential equation problem,
it is now possible, by a semi-inverse procedure, to effect a reduction of the tenth-order non-
linear system of two-dimensional plate equations in Reissner (1986) to a sixth order system
of ordinary differential equations. The same as for the limiting case of this result in the
absence of shear deformability, this system turns out to be linear in the dependent variables
but non-linear insofar as the relations between loads and deformations are concerned. It
remains to complete our analysis by appropriate numerical evaluations.

THE DIFFERENTIAL EQUATIONS FOR SMALL FINITE DEFLECTIONS

The equilibrium and strain displacement equations are in accordance with Reissner
(1986)

N +N,=0 N, +N,, =0 H

Qe+ Q,, + W N, +2w N +w, N, =0 9))

M +My=0., M, +tM, =0, 3

e = U HiWE, & =u,, +IW, & = U u b, G
Ve =tWo ¥, =¢,+w, (5)

Kx=Qen K, =@y K =0+, (6)

In this N, N,, N, and Q,, Q, are mid-surface tangential and normal stress resultants, M,
M,, M, are bending and twisting stress couples, ¢,, &,, £, K. K,, K, are stretching and bending
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strains, y,, 7, are transverse shearing strains and u., u,, w, ¢, ¢, are translational and
rotational displacement components. In as much as the strain measures ¢, y and x are
conjugates of the stress measures N, @, M, in conjunction with the equilibrium equations
{1)—(3). it is consistent to supplement the system (1)—(6) with constitutive relations of the
form

&y = C.rNt“ Cvav 8}‘ = CVN,V—CVNX’ & = CIIVI (7)
7o =40, 7 =4,0, (8)
M,=Dnx,+Dx,, M,=Dxk +Dxr,., M, = Dx, 18]

We do not consider here a reduction of the system (1)~(9) to three simultaneous
differential equations for the deflection w in conjunction with two stress functions Kand J
as in Reissner (1986). Instead we undertake a reduction of (1)-(6) to an intrinsic form,
involving stress and strain measures only, as follows. We first deduce, as a consequence of
(5) and (6). as expressions for the second derivatives of w,

W = Vex =Ko W =YK 2W, = Yo+ V0— k. (1)
From this we obtain two compatibility equations
=R = Vo~V 2K TR = Yo = Ve (1, 12)
A third compatibility cquation follows from (4) in conjunction with {10} in the form
Eer =By Foyere = 3K =Yy = V) = (K =70 (K, = 7). (13)

The intrinsic version of the equations of this plate theory is completed upon introducing
(10) into (2) so as to have, in place of (2),

Q\',\' + Qv.r = (Kr ”y\‘.,r)Nx + (‘Kv “YV.V)NV - (Kl A% '-Yv,t)Nl' (l4)

Equations (11)-(14) reduce to corresponding relations in Reissner (1992) upon setting
7« =7, = 0, in conjunction with setting A, = 4, = 0 in (8).

BOUNDARY CONDITIONS FOR TWISTING AND TRANSVERSE BENDING OF A
RECTANGULAR PLATE

Given a plate with edges x = +aand y = +b, we stipulate that the edges y = +hare
traction-free

y=%b N =N,=Q,=0, M,;=M, =0 (15)

and that the edges x = +a are acted upon by twisting moments T and transverse bending

moments M.
With a base plane perpendicular stress resultant Q. +w N +w N, we have as the
expression for the twisting moment

b
T= J‘ [(Qv + w._rN.r + W‘_,.N,)y— Ml}.v- +a d_V. (}6)
b

The corresponding transverse bending moment expression is
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b
M= J‘ M, +wN,] o.dy. 17
-b

The global loading conditions (16) and (17) are here associated with three conditions
of vanishing resultant edge force components, and one condition of the vanishing of the
base-plane perpendicular resultant bending moment component. These four conditions may
be written in the form

b
f (LYNGNLQ W Ne+w N yady =0. (18)
-b

THE SEMI-INVERSE ONE-DIMENSIONAL SOLUTION
As in Reissner (1992) we assume that the constitutive coefficients in (7)—(9) are
independent of x, and we utilize a semi-inverse procedure to obtain a rational class of
solutions of the system (1), (3), (7)-(9) and (11)-(14), by stipulating that all measures of
stress and strain are functions of y only.
We then have from (1) in conjunction with (15) that
N,=N,=0 (19)
and from (11) and (12) that
ke =k, Ki—=Yey = 20 (20)
where & and @ are constants which remain to be determined.
The introduction of (19) and (20) into eqns (3), (13) and (14) lcaves as a system of
ordinary differential cquations

Mi=Q., M,=Q,, Q,=kN, & o=0"—(x,—7))k (21,22)

with the primes indicating differentiation with respect to y. The above system is transformed,
with the help of eqns (20) and (7)-(9). into a second order differential equation for A,

M, —D(AM}) =2D,0 (23)
and into a fourth order equation for M,
D, [(C. M) —Kk*(A,M,)]+k*M, = D,k0° + D,k (24)
The boundary conditions for these two equations are, on the basis of (15) and (21)
y=1b, M,=0, M, =0, M,=0. (25)
When A, = A, = 0 eqns (23)-(25) reduce, upon some change in notation, to the cor-
responding results in Reissner (1992).
With M, and M, determined as functions of & and ¢ we may next obtain M and T

from (17) and (18) in terms of & and 8. We find, upon certain transformations, with the
help of (19)-(21)

b D’) M, M} A,(M)}
M= - ap v DN
L[(Dx ) k+2D, D, ~ kD, o dy (26)

and
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’ M,
= —j [Lu, +20 —‘] dy. 7
" k

The fact that the one-dimensional results in (19)—(25) are consistent with the homo-
geneous global boundary conditions (18) is established in a manner which is analogous to
the derivation of (26) and (27).

CONCLUDING REMARKS

Since the differential equations (23) and (24) have constant coeflicients for plates with
constant values of the constitutive coefficients, the determination of the functions M(&, #)
and T(k.0). and the discussion of the associated stability problem. can be carried out in
closed form in the same manner as was done in Reissner (1957) forthecase with 4, = 4, =0
and D, = Dy, D, =vD,.

As was the case for the problem with A4, = 4, = 0 in Reissner (1992), it remains to be
shown that the one-dimensional solution in accordance with (23)-(27) does in fact represent,
for sufficiently large values of a/b, the interior portion of an asymptotic solution of a two-
dimensional problem now with local boundary conditions

x=+a N.=N,=0 (28)

and

x=+ta, w= Fluy, ¢, = +0u, ¢, = thka-0y (29)

in place of the global conditions (16) -(18).
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